Tetrahydrobiopterin biosynthesis, regeneration and functions.
نویسندگان
چکیده
Tetrahydrobiopterin (BH(4)) cofactor is essential for various processes, and is present in probably every cell or tissue of higher organisms. BH(4) is required for various enzyme activities, and for less defined functions at the cellular level. The pathway for the de novo biosynthesis of BH(4) from GTP involves GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase. Based on gene cloning, recombinant expression, mutagenesis studies, structural analysis of crystals and NMR studies, reaction mechanisms for the biosynthetic and recycling enzymes were proposed. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I, the expression of which may be under the control of cytokine induction. In the liver at least, activity is inhibited by BH(4), but stimulated by phenylalanine through the GTP cyclohydrolase I feedback regulatory protein. The enzymes that depend on BH(4) are the phenylalanine, tyrosine and tryptophan hydroxylases, the latter two being the rate-limiting enzymes for catecholamine and 5-hydroxytryptamine (serotonin) biosynthesis, all NO synthase isoforms and the glyceryl-ether mono-oxygenase. On a cellular level, BH(4) has been found to be a growth or proliferation factor for Crithidia fasciculata, haemopoietic cells and various mammalian cell lines. In the nervous system, BH(4) is a self-protecting factor for NO, or a general neuroprotecting factor via the NO synthase pathway, and has neurotransmitter-releasing function. With regard to human disease, BH(4) deficiency due to autosomal recessive mutations in all enzymes (except sepiapterin reductase) have been described as a cause of hyperphenylalaninaemia. Furthermore, several neurological diseases, including Dopa-responsive dystonia, but also Alzheimer's disease, Parkinson's disease, autism and depression, have been suggested to be a consequence of restricted cofactor availability.
منابع مشابه
IMP Dehydrogenase Inhibitors Reduce Intracellular Tetrahydrobiopterin Levels through Reduction of Intracellular GTP Levels
GTP cyclohydrolase I exhibits a positive homotropic cooperative binding to GTP, which raises the possibility of a role for GTP in regulating the nzyme reaction (Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) J. Biol. Chem. 264, 21660-21664). We examined whether or not the intracellular GTP level is within the range of affecting GTP cyclohydrolase I activity, usi...
متن کاملTetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects.
In previous minireviews in this journal, we discussed work on induction of tetrahydrobiopterin biosynthesis by cytokines and its significance for nitric oxide (NO) production of intact cells as well as functions of H4-biopterin identified at this time for NO synthases (Proc Soc Exp Biol Med 203: 1-12, 1993; Proc Soc Exp Biol Med 219: 171-182, 1998). Meanwhile, the recognition of the importance ...
متن کاملSynthesis, utilization, and structure of the tetrahydropterin intermediates in the bovine adrenal medullary de novo biosynthesis of tetrahydrobiopterin.
The biosynthesis of two tetrahydropterin intermediates (H4pterin-1 and H4pterin-2), their conversion to tetrahydrobiopterin, and their overall chemical structures are described. A new high performance liquid chromatographic separation of these and other tetrahydropterins is also described. The biosynthesis of tetrahydrobiopterin from dihydroneopterin triphosphate proceeds in the presence of the...
متن کاملTetrahydrobiopterin: biochemistry and pathophysiology.
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pa...
متن کاملTetrahydrobiopterin biosynthesis as an off-target of sulfa drugs.
The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 347 Pt 1 شماره
صفحات -
تاریخ انتشار 2000